Requiem for Relativity

More
15 years 2 months ago #23849 by Joe Keller
Replied by Joe Keller on topic Reply from
More proof that the Tifft periods are local phenomena

Today, I corrected Blitz's catalog (of intragalactic HII cloud, CO line, Radial Velocities) for solar apex motion. I defined the solar apex motion as (negative of) the vector whose direction gives the highest correlation between cos(theta) and RV, and whose magnitude v0 then gives the slope of the best fitting linear relationship between cos(theta) and RV. (This is standard elementary statistics; see Dixon or Snedecor.)

The apparent solar apex velocity vector, from the HII cloud RVs, was toward rectangular celestial (epoch 1950) coords. (x,y,z) = (+0.102,-0.002,+0.995), i.e. RA 358.9deg, Decl +84.1deg. The magnitude of the apparent solar apex velocity was 44.2 km/s.

(In this analysis, I didn't use all the abovementioned 194 points. I used only those of the 194, that were on the first six of the seven sheets of Blitz's Table A, because I'd run out of change at the library and hadn't been able to photocopy the last sheet, instead copying only the two columns I needed for the previous post. Roughly this amounts to excluding points with 6h < RA < 10h, so the RA of the 165 utilized points, ranges from 17h, counterclockwise to 6h: roughly a hemisphere. This sample symmetry gained by omitting the last sheet, might help, by canceling even order harmonic effects.)

Before subtracting the effect of the apparent apex motion (i.e., subtracting the first order Laplace term of the gas cloud radial velocity function on the celestial sphere) the highest periodogram peaks between 1.5 & 3.5 km/s, in order from strongest to weakest, were 2.87, 2.35, and 3.21 km/s (vs. 2.87, 2.35, and 3.22 for the full 194 point data set according to the previous post). However, the 3.21 peak had switched from strongest to weakest, of these three.

After correction for apex motion, the 2.874 peak became 2.877 and was only slightly weaker. The 2.350 peak became moderately weaker and moved to 2.313. The 3.21 peak was all but obliterated; maybe it originated as mainly a spacing regularity.

The two observed extragalactic redshift frequency quanta in this range, most prominently displayed in Tifft's papers, are 2.88 and 2.31. Remarkably, intragalactic HII clouds, adjusted for apparent apex motion, show as the most prominent redshift quantization frequencies, in this range 1.5-3.5 km/s, also 2.877 and 2.313!

Please Log in or Create an account to join the conversation.

More
15 years 2 months ago #23063 by Joe Keller
Replied by Joe Keller on topic Reply from
More on the Tifft periods.

The two Tifft periods I discovered by the methods above, in the radial velocities of carbon monoxide radicals in Milky Way HII clouds (Blitz's catalog, published 1982), were 2.3127 and 2.8770 km/s (the last digits aren't significant). Tifft mentions 2.31 and 2.88 most prominently, in my range, 1.5-3.5. (Some of Tifft's most prominent larger periods are multiples of these.)

Some will say, "I don't know enough, about the vast and often somewhat debatable mathematical dogma of Fourier analysis, to say whether Keller analyzed it correctly." Others will say, "I know more than Keller, about the vast and often somewhat debatable mathematical dogma of Fourier analysis, and I think Keller made this or that methodological error, therefore I don't have to pay any more attention." Both would be wrong.

As lawyers say, "The thing speaks for itself." How could such elementary and straightforward methods as mine, get intragalactic numbers, so close to Tifft's extragalactic numbers, however "significant" these might otherwise theoretically be?

If you don't know how to make a periodogram, but got an "A" in high school trigonometry, then get a book and learn how (try any book or article by a statistician named Tukey). If you think you know more about making a periodogram, than I do, then verify my work yourself (email me and I'll send you my computer program, so you can copy the data and save the work of typing it in).

Some say, "Creationism is incorrect and Tifft periods would prove Creation, therefore Tifft periods do not exist and I don't have to pay any more attention." Tifft periods have no more to do with Creation, than do periods in the population of rabbits in Saskatchewan.

Some say, "Joe Keller is claiming this, and Joe Keller believes in Planet X, therefore I don't have to pay any more attention." It's not about me, though, except that I do know how to write a BASIC computer program that adds a few data.

Before correcting the data for the presumed solar apex motion (i.e., removing the first order Laplace term) I found periods 2.35, 2.87, and 3.21. The phase of the best fitting sinusoid, was only 11deg from "+ sine" for the 3.21 period, but even farther from any such multiple of 90deg, for the other periods. That is, the phases were not significantly near multiples of 90deg.

On the other hand, after correcting the data for the presumed solar apex motion (i.e., removing the first order Laplace term) I found that the two surviving strong periods, 2.31 and 2.88, gave best fitting sinusoids only 1.3deg, and 8deg, resp., from the phase, "+ sine" (p = 0.26%, to have one or the other sinusoid within 1.3deg of a multiple of 90 phase, and the other within 8deg of the same multiple of 90).

That is, observed intragalactic gas redshift values cluster at ...-0.75*2.31, +0.25*2.31, +1.25*2.31,...,etc., and at ...-0.75*2.88, +0.25*2.88, +1.25*2.88, etc. This regular phase, is further evidence that the correlation is not accidental.

Please Log in or Create an account to join the conversation.

More
15 years 2 months ago #23064 by Joe Keller
Replied by Joe Keller on topic Reply from
The origin of the Tifft periods

The ratio of the small Tifft periods, is 2.8770/2.3127 = 1.244. This 5::4 ratio likely arises because in a body made of electrically charged deBroglie waves, the outward pressure due to electric repulsion, varies as 1/radius^4, but the outward pressure due to the momentum of the (lowest harmonic) standing deBroglie waves, varies as 1/radius^5.

Suppose conditions require that the pressure increase or decrease 1% per unit time (i.e., that the logarithmic time derivative of the pressure equal +/- 0.01). To achieve this for the electric pressure, will require 5/4 the rate of change, v, in the radius, r, as to achieve this for the deBroglie pressure. Saying this with algebra: the condition, for electric (leads to 2.88 km/s) and deBroglie (leads to 2.31 km/s) pressures, leads respectively to omega = 4*v/r and to omega = 5*v/r. If omega is fixed, then whatever r is, the "v" solving the former equation will be 1.25 times the "v" solving the latter.

The necessary speed of electron expansion or contraction, v, depends on omega and r. If, following Planck, omega = E/hbar, and, following Einstein, E = m*c^2, then r = 1.49/10^15 cm for the electron.

Suppose further that E = 0.5 * alpha^2 * m * c^2, where alpha is the fine structure constant. This is the (absolute value of) the total (potential plus kinetic) orbital energy of a Bohr electron in the ground state of a Hydrogen atom. Then r = 5.59/10^11 cm. This might be practically the same as the classical quantum mechanical radius of the electron, rQMC = sqrt(3) * rCompton = sqrt(3) * hbar /(m*c) = 6.69/10^11 cm (MH MacGregor, The Enigmatic Electron, Kluwer, 1992; p. 5. eqn. 1.3). So, the smallest Tifft redshift periods, are the quantum mechanical and electrostatic radial pulsation speeds, of electrons in Hydrogen atoms.

Please Log in or Create an account to join the conversation.

More
15 years 2 months ago #23066 by Joe Keller
Replied by Joe Keller on topic Reply from
More correlations of Dec. 2012 planetary positions

As discussed above, our four giant planets most perfectly lie on a circle at approx. 16h (JPL ephemeris) or 18h (extrapolation from 2010 Astronomical Almanac heliocentric data), Dec. 26, 2012. Carefully extrapolating the 2010 Astronomical Almanac heliocentric data, the exact time is 17h37m, Dec. 26, 2012. If the giant planets' centers' positions at that time, according to this extrapolation, are projected onto the ecliptic of date (with the equinox of date) then the parabola through the four points has axis at 79.767deg.

Interpolating the JPL ephemeris positions for 0h Dec. 20, 23 & 26, the linear momenta (using the masses of the planets plus their moons, and finding the velocities by second order numerical differentiation) of all eight major planets are added vectorially and projected onto the ecliptic of date (with equinox of date): the direction is longitude 167.60deg, at 17h37m Dec. 26. If only the four giant planets are used, it's 167.21. Barbarossa's ecliptic longitude at that time, with that ecliptic and equinox, is 176.55.

In complex analysis, three points on a line are considered four points on a circle, with infinity as the fourth point. Just as JSUN lie on a circle Dec. 26, 2012, also SunMercurySaturn and SunVenusS lie on lines near this date (making the circles SunMeSInfinity & SunVSInf). Interpolating the JPL ephemeris and rotating to ecliptic coordinates for the equinox and ecliptic of 2000.0, I find that Mercury and Saturn have the same longitude at GMT 0h0m Dec. 20, and Venus and Saturn have the same longitude at GMT 16h24m Dec. 21.

For both Mercury and Venus, Saturn gets unusually close to the inner planet in latitude as well, so that transits of the Sun occur as seen from Saturn. Transits of Mercury and Venus (especially Venus) are less rare from Saturn than from Earth, but still unusual. Not only is a transit of Venus visible from Earth in June 2012, also there is a transit of Venus visible from Saturn on Dec. 21, 2012, only five hours after Earth's solstice!

Including the Sun, the Infinity point, and the eight major planets, there are 10*9*8*7/(1*2*3*4) = 210 possible "circles of four" that can occur. Some of these are rarer than others, but remarkably, three of them (see above) occur within a week, 0h Dec. 20 to 18h Dec. 26, 2012.

Today also I made a better estimate of the time represented by the "2012 crop circle" which appeared in England in 2008. Again using Nick Nicholson's photo printed from the internet, with my same longitudes of the planets (measured from the photo and corrected for its oblique projection) this time I find that the minimum variance of (expected longitude minus observed longitude) occurs if the date is GMT 1h57m, Dec. 22, 2012. The standard deviation is almost 3deg, so since Mercury moves 4deg/day, the confidence interval is a day or two.

Please Log in or Create an account to join the conversation.

More
15 years 2 months ago #23068 by Joe Keller
Replied by Joe Keller on topic Reply from
Yet more correlations of Dec. 2012 planetary positions

According to the online JPL ephemeris: as seen from the center of mass of Saturn's system (practically the same thing as the center of Saturn) the center of Venus crosses the boundary of the Sun's disk (i.e., the transit of Venus begins, as seen from Saturn) at 11h35m UT, 12/21/12. This is only 15 minutes after Earth's solstice.

Monte Carlo simulation, with random positions on circular orbits using the giant planets' semimajor axes as radii, shows that the circle SaturnUranusNeptune, will intersect Jupiter's orbit 57% of the time. So, half the time, Jupiter has two points at which it can lie on that circle. The circle JSUN is a configuration that occurs on the average once a decade.

Using the planetary axes of rotation according to the 2009 Astronomical Almanac, p. E3 (based on the 2006 IAU report), and the JPL ephemeris positions, I find that at 13h51m UT, 12/24/12, the axes of Mars and of Uranus make the same angle, 19.4333deg = arcsin(0.33271), with the planes perpendicular to their vectors from the Sun. Mars' precession (thought to be about 1/7 of Earth's) would make this 19.4355, using Mars' 2013.0 axis. (The tetrahedral angle is arcsin(1/3) = 19.471deg.)

At 2013.0, Neptune's axis is 27deg from the perpendicular plane, but that is a few years from Neptune's solstice.

Please Log in or Create an account to join the conversation.

More
15 years 2 months ago #23069 by Joe Keller
Replied by Joe Keller on topic Reply from
Venus: Mayan mnemonic for Barbarossa's period

Overall, as of today, Oct. 22, 2009, the best book I've seen on 2012, in any bookstore, is "Beyond 2012 - Catastrophe or Awakening" by Geoff Stray. It has a transcription error on p. 39: the oldest Egyptian megalithic observatory (that at Nabta) was dated 6000-6500 BP (Before Present, i.e. 4000-4500 BC) not 6000 BC.

In this paragraph, I paraphrase and augment Stray's explanation of the Venus cycles which seem to have been important to the Maya. On the average (i.e. using "mean motion") Venus laps Earth in 1.598683 yr (I use Earth's sidereal year of 365.25636d; and the mean of the 15 osculating mean motions of Venus listed among its orbital elements on p. E5 of the 2010 Astronomical Almanac: these oscillate roughly with period about 110d, which is the differential period of Mercury and Earth). This is nearly 8/5 yr, so Venus and Earth return approximately to their same alignment relative to the stars, after 5 cycles, i.e. 8 yrs, with an orbital period resonance of about 13::8. The orbital period resonance is more precisely (13*30 + 5)::(8*30 + 3) = 395::243. So, there are three important intervals: the 1.6 yr "morning star/evening star cycle" which constitutes one lap; the 8 yr "short Venus cycle" which returns Earth & Venus to nearly the same relative position; and the 243 yr "long Venus cycle" which also returns Earth & Venus to the same relative position but ten times more precisely. (End of paragraph.)

I gather that some think the Mayans knew the equation:

243 = 8*30 + 1.6*2 = 8*26 + 1.6*22.

That is, the long Venus cycle is 26 times the short Venus cycle, plus 22 morning/evening cycles. The numbers 26 and 13 were prominent in Mayan calendars. Thirteen also appears in the 13::8 Venus::Earth period resonance.

Might there be an "ultralong Venus cycle"? Consider:

243*26 + 1*22 = 6340yr = Barbarossa's period, analogous to an "ultralong Venus cycle".

That is, Barbarossa's period is found from the long Venus cycle and Earth's year, by the same Diophantine linear formula by which the long Venus cycle is found from the short Venus cycle and the morning/evening cycle.

Some Mayan/2012 lore, says that the last 25 yrs of the long count, i.e. the interval 1987-2012, are special. These 25 yrs might be identical with the extra 22 yr in the above formula, either through imperfect recollection or through small errors in Barbarossa's or Venus' period.

Please Log in or Create an account to join the conversation.

Time to create page: 1.823 seconds
Powered by Kunena Forum